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Abstract— This paper presents a framework that integrates
multi-robot systems (MRS) and reinforcement learning (RL) to
address the challenges of real-world deployment. We provide a
framework for integrating the Robot Operating System 2 (ROS2)
with Unity’s ML-Agents toolkit. By building on top of the ROS2
ecosystem, our framework can take advantage of the numerous
sensor drivers, state estimation algorithms, motion planning
libraries, and other low-level capabilities that have already been
developed and field-tested within the ROS2 community. This
avoids having to reinvent several core functionalities for robots
and enables the training and deployment of reinforcement
learning policies for complex tasks on real-world robotic
platforms. The proposed framework aims to enable quick and
effective integration of existing ROS2 robots and sensors, and
facilitate the quick transfer of learned policies from simulation
to real-world robotic systems, addressing the challenging sim-
to-real gap. Furthermore, the paper discusses techniques for
continual real-world training to further refine the learned
behaviors. Finally, we also provide experimental demonstrations
to establish that using ROS2’s perception abstraction, we are
able to bridge the sim-to-real gap more effectively compared to
using raw sensory observations.

I. INTRODUCTION

In recent years, the integration of Multi-Robot Systems
(MRS) and Reinforcement Learning (RL) has emerged as
a burgeoning field of research with significant implica-
tions across various domains. This synergy holds particular
promise in areas such as disaster response scenarios [1],
[2], autonomous farming [3], planetary exploration [4], and
warehouse manufacturing [5]. However, these operations
present compounding challenges that hinder the use of
robots in such scenarios. For example, in the particular
case of disaster response, critical situations demand efficient
coordination among multiple agents to navigate hazardous
environments, locate survivors, deliver aid, and execute
rescue missions. With the potential to revolutionize how
we approach several humanitarian assistance and disaster
response scenarios, adaptable multi-robot systems equipped
with RL capabilities offer a powerful toolkit for addressing
the complex challenges inherent in these scenarios.

Despite the promise of multi-agent systems, they also
introduce significant challenges. Coordinating the actions of
multiple autonomous agents in dynamic and uncertain envi-
ronments requires sophisticated decision-making capabilities.
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RL offers a principled approach to address these challenges by
enabling agents to learn optimal policies through interaction
with their environment. By formulating the problem as a
Markov Decision Process (MDP), RL algorithms can learn to
make sequential decisions that maximize long-term rewards,
taking into account the actions of other agents and the
stochastic nature of the environment.

However, one of the key challenges in deploying RL-
based solutions in real-world scenarios is the sim-to-real
gap. Typically, RL algorithms are trained in simulation
environments to support efficiency and safety during learning.
However, these learned policies from simulation may not
always transfer effectively to the physical world due to
differences in dynamics, sensor noise, and environmental
conditions. Usually, sim environments deal with agents of
negligible dynamics, whereas in the real-world, agents need
to learn how to deal with their dynamics in planning tasks.
Bridging this gap requires techniques for transferring learned
policies from simulation to reality, adapting them to account
for discrepancies between the two domains, and ensuring
robust performance in diverse and unpredictable environments.
Addressing the sim-to-real challenge is crucial to the practical
applicability and scalability of RL-based approaches in real-
world scenarios.

In this paper, we present the ROS2MLAgents framework
that bridges Unity’s ML-Agents [6] with ROS2 [7], and
offers several advantages for deploying learnable robotic
tasks readily to real-world scenarios. To begin with, our
interface is simulator-agnostic and works with any simulator
that can interface with ROS2. Leveraging the ROS2 ecosystem
provides support for a wide range of sensors, robot platforms,
and numerous motion planning, perception, mapping and other
libraries that can be used to learn more complex behaviors
while also providing tools for quick deployment on physical
robots. Specifically, using these libraries ROS2 provides
abstract representations, such as costmaps or semantic seg-
mentation, that have a narrower gap between simulated and
real-world inputs compared to raw sensor data. At a high level,
our interface takes as input abstract perception representations
generated from ROS2 using raw sensory data, processes
it, estimates the rewards from these observations and robot
states, and feeds it to the reinforcement learning Python brain
provided by Unity’s MLAgents. Additionally, our framework
enables continual real-world training to fine-tune policies
learned initially in simulation, further bridging the sim-to-
real gap. The framework also supports parallel training of
multiple agents across simulated and real environments for
efficient multi-agent learning. Through this ROS2MLAgents



framework, we aim to enable the safe and effective transfer
of learned multi-agent policies from simulation to real-world
robotic systems. We also present implementation details and
experimental results validating the framework’s efficacy in
bridging the sim-to-real gap for complex, multi-agent robotic
applications.

II. RELATED WORK

A. Multi-Agent Reinforcement Learning (MARL)

MARL has emerged as a promising approach to address
the challenges of decision-making in complex multi-agent
environments. MARL algorithms aim to develop policies
that enable agents to learn and adapt their behavior through
interactions with the environment and other agents, without re-
lying on explicit models or assumptions about the underlying
dynamics.

Seminal works in MARL include [8], [9]. These works
have laid the foundation for various MARL techniques,
including value-based methods that estimate the expected
future reward (value function) for each possible state and
action combination, which can then be used to derive an
optimal policy. Examples of value-based methods include
independent Q-learning [10], friend-or-foe Q-learning [11]
and extensions to the multi-agent setting [12]. There are
also policy gradient-based methods that directly optimize
the policy parameters to maximize the expected return,
without explicitly representing the value function. Such
methods include counterfactual multi-agent policy gradients
(COMAPG) [13] and actor-critic algorithms [14]. Finally,
there is the class of model-based methods that learn a
model of the environment dynamics, which can then be used
for planning or simulating the effects of different actions.
Examples include interactive particle environments [15] and
Dreamer [16].

B. Frameworks and Toolkits

To facilitate research and experimentation in the field of
multi-agent systems, several frameworks and toolkits have
been developed. OpenAI’s AI Gym [17] is a widely-used
toolkit for developing and comparing RL algorithms. While
it primarily focuses on single-agent environments, it also
includes a limited set of multi-agent environments, such
as particle environments and classic game theory problems.
Similarly, PettingZoo [18] is a Python library built on top
of AI Gym, specifically designed for MARL. It provides
a diverse set of multi-agent environments, ranging from
classic games to more complex scenarios, and includes
tools for evaluating and comparing MARL algorithms. In
the past few years, Unity’s MLAgents [6] has come up
as a comprehensive platform for training and evaluating
intelligent agents in various scenarios, including multi-agents
settings. It provides a rich 3D simulation environment, built-
in support for popular deep RL algorithms, and tools for
designing and customizing agent behaviors. Unlike AI Gym
and PettingZoo, which are primarily focused on providing
benchmark environments, ML-Agents offers a more holistic
solution for developing and deploying multi-agent systems,

and has a strong emphasis on 3D simulations and integration
with game based environments.

Additionally, PyBullet [19] and AirSim [20] are also pop-
ular simulators used for multi-agent reinforcement learning
research. PyBullet is a Python wrapper on the Bullet physics
engine, providing a robotics simulation environment for
research and education. AirSim, on the other hand, is a high-
fidelity simulator for drones and other vehicles, developed by
Microsoft, and has been used for multi-agent reinforcement
learning experiments.

C. Sim-to-Real Transfer

While simulations provide a controlled and safe envi-
ronment for developing and testing multi-agent systems,
transferring the learned policies to real-world scenarios
remains a significant challenge. The sim-to-real gap, where
simulated environments may not accurately capture the
complexities of the real world, can lead to performance
degradation or failure when deploying trained agents in real-
world scenarios.

Methods have explored various techniques to address the
sim-to-real transfer problem, such as domain randomization
to randomize various aspects of the simulated environment
like texture or lighting conditions [21]. Another method is
adversarial training where perturbations or noise are injected
into an agent’s observations and actions during training
[22]. One of the seminal works on physical robots involves
transferring learned quadruped walking policies from Sim
to Real [23]. Transfer learning has been used to leverage
knowledge gained from simulated environments to initialize or
guide the learning the process in real-world settings (i.e., fine-
tuning pretrained models) [24], [25]. Hybrid approaches that
combine elements of simulated worlds and real-world data
have been introduced to refine policies learned in simulation
[26].

III. APPROACH

In this section, we introduce the ROS2MLAgents interface,
describe our framework for learning in a ROS2-based system
in both simulation and on hardware, and finally explain how
the trained policy from simulation is transferred to a physical
platform.

A. The ROS2MLAgents Interface

The Unity ML-Agents toolkit [6] provides a framework
for training intelligent agents within the Unity simulation
environment. However, it is primarily designed to operate
within the Unity ecosystem, making it challenging to inte-
grate with other simulation platforms or real-world robotic
systems. To address this limitation, we have developed the
ROS2MLAgents interface, which serves as a bridge between
the Unity ML-Agents Python brain and ROS2 [7].

ROS2 is a widely-adopted middleware framework for
robotics applications, providing a modular architecture for
managing sensors, actuators, and control algorithms across
various hardware platforms. Our interface leverages the
Protocol Buffers (protobuf) [27] message definitions used



by the Unity ML-Agents toolkit to communicate with the
Python brain. By implementing a ROS2 node that understands
and translates these protobuf messages, we decouple the ML-
Agents brain from the Unity simulation environment, enabling
seamless integration with other simulation platforms such as
Unreal, IssacSim, Gazebo, or real-world robotic systems that
support ROS2.

Fig. 1. A block diagram of the modules referred to in this paper. From left
to right: for each agent, data is transported via ROS2 messaging from either
a simulator (upper) or a physical robot (lower) to an autonomy stack of
ROS2 nodes which produce higher level representations (costmaps and inter-
robot range/bearing measurements in this paper). These representations are
consumed by ROS2MLAgent nodes which communicate to the MLAgents
Python brain via its protobuf interface. Control outputs are processed via
the same pipeline from right to left.

Our ROS2MLAgents interface acts as a two-way commu-
nication channel. In one direction, it receives sensor data and
observations, including camera images, GPS, range sensors,
and LiDAR data, from the simulator or physical robot. In
traditional RL research, such rich and high-dimensional sensor
data are rarely used, as most benchmark environments rely
on simplistic observations like low-dimensional state vectors
or pixel-based renderings. However, in real-world robotic
applications, robots are equipped with diverse sensors that
provide complex data streams necessary to support safe
and effective operation. Working with these complex sensor
modalities presents challenges for RL algorithms. First, the
high-dimensional nature of sensor data can overwhelm tradi-
tional deep learning architectures, leading to computational
inefficiencies and scalability issues. Second, these sensing
modalities often have different data distributions in simulation
compared to real-world scenarios, making it difficult to
directly transfer learned policies.

To address these challenges, our ROS2MLAgents interface
incorporates a modular and extensible preprocessing pipeline
that leverages the capabilities of ROS2 to process raw sensor
data and extract normalized abstract representations with
minimal distribution differences between simulation and
real-world settings. For example, LiDAR point clouds can
be converted into occupancy grid maps or elevation maps.
These abstract representations are then encapsulated into
protobuf messages that can be consumed by the ML-Agents
brain. In the other direction of the communication channel,
ROS2MLAgents translates the brain’s action commands into
ROS2 messages that can be executed by the appropriate actu-
ators or controllers within the simulation or on the physical
robot. A visualization of this two-way communication channel
is depicted in Fig. 1. Note that unlike most simulation-based

learning libraries, our ROS2MLAgents interface is capable
of handling asynchronous sensory updates.

B. Training the Agent in Simulation

Building on the ROS2MlAgents interface, we now describe
how to perform training of robot agents in simulation running
ROS2.

1) Defining Agents and Teams: In the ROS2MLAgents
framework, each agent is defined by its id, behavior name
and team name. This allows for flexible configuration of
both single- and multi-agent scenarios, where agents can
be grouped into different teams with distinct objectives and
policies. For example, multiple agents within the same team
with unique IDs to learn the same behaviors, reducing training
time. Additionally, we can have multiple agents in different
teams to learn cooperative or adversarial behaviors. When
defining agents, these behavior and team names are specified
in the Agent Configuration.

2) Defining Model and Trainers: We can further simplify
the process of defining the neural network architectures
and training algorithms by leveraging a configuration-driven
approach. Specifically, network architectures and hyperpa-
rameters for each agent behavior can be defined in a YAML
configuration file. This allows for easy experimentation and
modification of the neural network structure without the
need to directly edit the code. The configuration file can
specify parameters such as the input dimensions (e.g., size of
observation space), network layers (e.g., number and size of
fully connected or convolutional layers), Activation functions,
normalization techniques, regularization methods, and other
parameters. By centralizing these network definitions in a con-
figuration file, the ROS2MLAgents framework enables rapid
prototyping and exploration of different model architectures
to find the most suitable one.

3) Trainer Configuration: Similarly, the training algorithm
and its associated hyperparameters can also be specified in the
YAML configuration file. The ROS2MLAgents framework
supports a variety of reinforcement learning algorithms,
including Proximal Policy Optimization (PPO) [28], Soft
Actor-Critic (SAC) [14], and POsthumous Credit Assign-
ment (POCA) [29]. The choice of the appropriate training
algorithm and its hyperparameters (e.g., learning rate, batch
size, discount factor) can have a significant impact on
the performance and stability of the learned policies. By
defining these parameters in the configuration file, users
can easily experiment with different training approaches
and find the most suitable one for their specific application.
This configuration-driven approach to defining the network
architecture and training algorithms greatly simplifies the
development and deployment of reinforcement learning-based
control policies in the ROS2MLAgents framework.

4) Saving Learned Models: During training in the simula-
tion environment, the learned models for each agent behavior
are periodically saved as checkpoint files as the rewards
increase. These checkpoint files contain the weights and
parameters of the neural networks that represent the agent’s
policy and value function. The ROS2MLAgents interface



provides functionality to save these checkpoint files, which
can then be used to initialize the agents on the physical robot
platform.

C. Sim-to-Real Transfer via ROS2MLAgents

Building on the ROS2MLAgents interface, we can now
describe how to implement simulation-to-real-world transfer
of learned policies with little to no additional setup overhead.
There are two different approaches for transferring the trained
model on real robots using the ROS2MLAgents framework:

• Fine Tuning on Hardware: In this method, the agents
are initialized with the checkpoint files saved from the
simulation training. This allows the agents to start with
a good initial policy and continue learning in the real-
world environment. The exploration of diverse policies
is still enabled, allowing the agents to improve their
expected rewards.

• Inference Mode: Alternatively, the agents can be run in
a pure inference mode, without any additional training.
In this case, the agents simply execute the policy learned
during the simulation training, without exploring and
modifying the model parameters. This approach can be
useful when the simulation environment closely matches
the real-world conditions, and no further fine-tuning is
required.

The choice between these two methods depends on the
specific application, the perception abstraction method used,
and the available computational resources on the physical
robot platform. The ROS2MLAgents framework supports both
approaches, allowing for seamless integration of simulation-
trained policies onto real robotic systems.

IV. EXPERIMENTS

In this section, we evaluate the effectiveness of our
ROS2MLAgents interface in bridging the sim-to-real gap
for a catch-up game scenario with mobile robot agents.

A. Experimental Setup

We conduct a series of experiments involving a catch-up
game scenario with mobile robot agents. In this game, one
robot (the chaser) attempts to minimize the distance (i.e.,
catch up) between itself and the other robot (the target).
This catch-up game is represented as a Partially Observable
Markov Game (POMG). Formally, at time t, each robot agent
receives local robot-centric observations ot (e.g., laserscans
or costmaps) and generates output actions at, which include
the linear and angular velocity of the robot. The robots also
have information about the other robot’s location via the state
observations st.

Accordingly, the reward for the target at any time step t
is computed as:

Rt,(target)(ot
i, s

t) = r
t,(target)
dist + r

t,(target)
align (1)

where r
t,(target)
dist represents the reward associated with progress-

ing away from the chaser as r
t,(target)
dist = dt − dt−1. Here, dt

denotes the Euclidean distance between chaser and target at

Fig. 2. The simulated environment with the clearpath warthog robots used
to learn the catch-up game.

time t. The term r
t,(target)
align incentivizes the target to maintain

its heading away from the chaser goal. Mathematically,
r
t,(target)
align = 0.5 +target ϕchaser, with targetϕchaser ∈ [−1, 1]

denoting the noramlized bearing angle from target to the
chaser.

Similarly, the reward for the chaser at any time step t can
be computed as:

Rt,(chaser)(ot
i, s

t) = r
t,(chaser)
dist + r

t,(chaser)
align (2)

where r
t,(chaser)
dist = −(r

t,(target)
dist ) and r

t,(chaser)
align = 0.5 −

chaserϕtarget. In addition, both the target and chaser receive a
very high negative reward (≪ −1) when they hit an obstacle
when navigating.

In the catch-up game, the objective of both the agents is
to maximize the expected return of rewards as:

max
∑
i

E
a
t,π

agent
θ

i

[ t+H∑
τ=t

γτ−tRτ,agent
i

]
(3)

where γ is the discount factor that determines the importance
placed on future rewards and a higher γ prioritizes long-
term rewards, while a lower value emphasizes immediate
rewards. Here, agent is either the chaser or the target and
πagent
θ represents the agent’s policy with θ as its parameters.

In Eq. 3, H represents the time horizon for which the robots
should optimize their expected rewards.

Using our ROS2MLAgents framework, we first learn
the policies for the agents in a simulated catch-up game
scenario. We utilize Clearpath Warthog robots navigating
a large open area with obstacles, as shown in Fig. 2. To
evaluate the transferability of the learned policies, we also
conduct experiments in a real-world setting using Clearpath
Jackal robots. The catch-up game scenario is replicated in a
controlled indoor environment, as illustrated in Fig. 3. Note
that the Jackal robots have different dynamics compared to the
Warthog robots used for training in simulation. Additionally,
the real-world environment includes concave obstacles and
higher levels of sensor noise, which result in a different data
distribution compared to the simulated environment.

We train and evaluate agent policies using two distinct
observation modalities:



Fig. 3. The indoor arena used for evaluating the catch-up game.

• Raw Laser Scan Observations: In this setup, the agent
receives the raw laser scan data from the robot’s LiDAR
sensor as input. The high-dimensional laser scan data
was processed and fed directly into the RL algorithm.

• Costmap Observations: Instead of raw sensor data, we
leverage the ROS2 perception abstractions to preprocess
the laser scan data and generate costmaps, which
represent the local environment as an occupancy grid
map. These costmap observations serve as input to the
RL algorithm, providing a more abstract and compact
representation of the environment.

B. Results on Game with Raw Laser Scan Observation

In this scenario, both the chaser and target agents received
high-dimensional laser scan data directly from the robot’s
LiDAR sensor as observations without any intermediate
processing or abstraction. To train the agents, we employed
a curriculum learning approach, where we first trained a
common maneuver policy using a navigation reward function.
This policy aimed to teach the agents basic navigation skills,
such as avoiding obstacles and reaching target locations. Once
the common maneuver policy converged, as shown in Fig.
4(a) (convergence of expected reward/episode length graph),
we fine-tuned separate policies for the chaser and target
agents using a catch-up game reward function. At this point,
in Fig. 4(a), we see the divergence of the expected rewards
for the chaser and target agents as they specialized for their
respective roles in the catch-up game scenario. The chaser

(a) Training in Simulation (b) Deployment in Indoor Arena

Fig. 4. Expected Rewards when Training with Raw Laser Scan Observations.

(a) Training in Simulation (b) Deployment in Indoor Arena

Fig. 5. Expected Rewards when Training with Costmap Based Observations.

agent learned to efficiently pursue and catch up to the target
agent, while the target agent learned evasive maneuvers to
avoid being caught.

To evaluate the transferability of the learned policies from
simulation to the real world, we deployed the trained policies
on the Clearpath Jackal robot platform in the indoor arena.
Fig. 4(b) illustrates the rewards of the target and chaser in
the hardware platform. For the 7000 steps (∼ 700 seconds)
the agents were executed, we observe that their rewards is
significantly less as compared the the simulation environment.
Mainly because, the indoor arena used for the real-world
experiments was significantly more constrained than the open
spaces in the simulation environment. The presence of walls
and other obstacles limited the agents’ ability to maneuver
freely, reducing their overall performance. In addition, the
real-world arena contained several concave obstacles, such as
corners and edges, which were more difficult for the agents
to navigate around compared to the convex obstacles in the
simulation.

Also we observe that there is little difference between
the rewards of chaser and target as the target agent was
started closer to the chaser agent, reducing the initial distance
between them. This made it more challenging for the chaser
agent to catch up to the target, as the target had less distance
to cover to reach the goal. The chaser agent in the real-world
experiments was also started with a better initial alignment
towards the target, compared to the simulation. This reduced
the need for the chaser to perform complex maneuvering
to orient itself towards the target, making the task slightly
easier for the chaser.

C. Results on Game with Costmap Observations

In this set of experiments, we explored the use of costmap
observations instead of raw laser scan data. The agents re-
ceived a 2D costmap representation of the environment as their
observations, which was processed through a Convolutional
Neural Network (CNN) encoder to extract relevant features.

The cumulative rewards obtained from the agent in illus-
trated in 5. In this scenario, we do not use a curriculum based
learning and observe the learning of the agents. We observe
that the target learns fast to navigate away from the chaser,
while the chaser slowly improves its rewards.

When deploying the trained policies on the Clearpath
Jackal robot in the indoor arena, we observed that the
agents’ performance in the real-world setting was much better



compared to the experiments with raw laser scan observations
as seen in 5(b). Interestingly, the rewards achieved by the
agents in the simulation environment were on par with the
results from the raw laser scan observation experiments.
This suggests that the costmap representation was able to
capture the necessary information for the catch-up game
task, without significant loss of performance compared to the
higher-dimensional laser scan data. Furthermore, the costmap
representation is less sensitive to sensor noise present in
the raw laser scan data. This likely contributed to the better
transferability of the learned policies from simulation to the
real-world hardware platform, as the agents were able to
generalize more effectively to the physical environment.

Overall, with the costmaps based perception abstraction,
ros2mlagents is able to demonstrate the several benefits
including better real-world performance as compared to the
raw laser scan approach.

V. CONCLUSION

In this paper, we introduced the ROS2MLAgents frame-
work, which offers seamless integration of Robot Operating
System 2 (ROS2) with Unity’s ML-Agents. Our framework
enables integration of abstract perception derived from raw
sensory data using ROS2, allowing agents to learn from
environment-agnostic features. This allows our framework
to run various reinforcement learning and imitation learning
methods with any environment of choice supporting ROS2.
In addition, our approach also enables learning against
asynchronous data from different robot sensors and also
provides seamless integration with physical robots, enabling
the deployment of learned policies on real-world systems.
Through our experiments, we have demonstrated the effec-
tiveness of the ROS2MLAgents framework in enabling safe
and efficient transfer of learned multi-agent policies from
simulation to real-world robotic systems.
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