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Abstract—Multi-agent reinforcement learning has been consid-
ered a promising approach to train agents for tasks that involve
cooperative and competitive interactions between players. Several
games have already been used as multi-agent problems, and
studies have proven that existing reinforcement learning methods
along with the multi-agent architecture can get an agent with
satisfied behavior. However, the difficulty of the existing multi-
agent tasks is modest in that they usually have as small and
discrete action spaces as game controller inputs. There need to
be more multi-agent tasks with complicated continuous control.
In this paper, we propose a customized multi-agent environment,
RallySim, where agents play a task that is inspired by rally
sports. In this task, two player robots placed on a court are
supposed to hit a ball with their end effectors to perform multiple
exchanges of the ball between them. It entails both the learning of
motor-skills and strategies, a factor that the existing tasks do not
contain. We use hierarchical reinforcement learning for training
an agent for the RallySim task, and the evaluation results show
that outperforms agents trained with ordinary architecture.

Index Terms—Multi-Agent Systems, Deep Reinforcement
Learning

I. INTRODUCTION

Reinforcement learning (RL) has demonstrated remarkable
performance in diverse fields, including acquisition of strategy
[1fI, [2], robot manipulation [3]], [4], and motion generation
[5], [6]. Among the countless problems of RL, training an
agent for situations where multiple players interact with each
other is one of the promising fields. If agents can be trained
in such multi-player settings, it widens the range of problems
RL can solve up to more complicated, realistic kinds in which
there are several humans, and interaction among them makes
the situation often unpredictable. Multi-agent reinforcement
learning (MARL) is one of the approaches to tackle these
problems, and many studies have been conducted to solve
multi-agents tasks efficiently [7], [8]. Along with exploring
various kinds of MARL, new tasks with multi-agent setting
have appeared and been utilized as benchmark tasks of MARL.

Although many of the existing benchmark tasks are good in
quality and played an imperative role in developing the field
of MARL, we believe that their difficulty leaves some room
to be desired, and there can be more tasks with more difficult
settings. One thing the existing tasks have in common is the

small size of their action space. Many benchmark tasks for
MARL today are inspired by video games such as StarCraft,
and DOTA2, to name a few. When an agent infers its action
in these tasks, it just chooses a combination of input buttons,
which can be represented only by a small group of discrete
numbers. If the action space of a task were not described by
controller inputs, it would still be mostly discrete and would
not give enough complication.

In this paper, we choose a rally of sports as a new MARL
task. We suppose that a rally involves two players on a
designated playing field with a target object that the players
aim to hit with their racket. The novelty of this task lies in
that being able to play a rally entails two types of learning.
One is to device where to hit the ball either to maintain the
rally for as long as possible or to make shots that give an
advantage to the player during a game. The other is to optimize
its continuous movement to properly hit the ball in accordance
with its intention. Having this two-stage process makes the
rally problem distinct from any other MARL task that already
exists.

We develop a RallySim, a simulated environment where
robot players move with continuous action space and hit a
ball to realize a rally. We conduct training in the simulation to
find a way to get a model that displays a desired performance
in the rally task. Through the experiments, we found that goal
conditioned method with a hierarchical reinforcement learning
(HRL) architecture works well in acquiring both the ability for
decision-making and optimized motor skills [9], [10], [11].

II. RELATED WORK

In this section, we introduce some of the existing MARL
tasks and compare them with RallySim. We compared
RallySim with five tasks: MAgent2 [12]], SMAC (StartCraft
Multi-Agent Challenges) [[13]], ML-Agent Soccer [[14]], DOTA2
[15] , and the soccer task from DeepMind [16]. The action
spaces of the first three tasks are all discrete with modest
size (ranging from several to dozens). Each action in these
spaces directly represents certain commands, so in these tasks,
agents only need to focus on optimizing their strategy of which
command to choose during each situation. Our RallySim



distinguishes itself from tasks with discrete action spaces in
that agents need to learn how to move the body joints of the
robots in addition to the strategic factor of the task, which
is to choose where they should return a ball. DOTA2 also
has a discrete action space, but its size grows up to 8000 to
80000 actions, making the task relatively complicated to learn.
RallySim can still considered a task that is distinct from any
tasks with discrete action spaces, including DOTA2, since its
action space is continuous and, therefore, provides new factors
of complication during training.

Among the five tasks shown in the table, the soccer task
recently released from DeepMind has the same level of dif-
ficulty as RallySim. Players deployed inside the simulation
are physically based human models that learn to perform
basic skills in soccer such as dribbling, following targets, and
kicking a ball to a goal.

We contend one major difference between the soccer task
and our RallySim is that the decision-making process in
RallySim is rather turn-based, while that in the soccer task
seems to be ceaseless and dynamic. When a rally is going,
a player makes a decision only at the moment its opponent
makes a shot and the ball starts to fly toward the player’s side.
The player then moves based on the decision it made, which
is fixed until it hits the ball. Agents sample less experience
through the training than they do in such tasks that the decision
is sampled at each step because the frequency at which a
player’s decision is sampled is low. This turn-based feature of
the rally task adds another layer to its difficulty as the training
efficiency deteriorates.

III. CREATION OF RALLYSIM

RallySim is created using Unity with version 2022.3.7.f1
[17]. Unity ML-Agents are utilized for building RL modules
in the simulation architecture. We provide two types of simu-
lations, each of which is designed in 2D and 3D, respectively.
Most of the results shown in the following sections are from
the 2D environment. We made and executed training in the
3D environment to suggest the outlook of this research.

A. Overview of Simulations

The customized simulations model a game of badminton, a
kind of sport that involves rallies. They consist of three main
components: a court, players, and a ball. Players are robots
with multiple joints, each of which is placed on either of the
two sides of the court. When a ball approaches one of the
players, it tries to move its body joints to realize the desired
movements for hitting the ball with its end effector or a racket.
When the racket hits the ball, proper force is applied to it based
on the collision, shooting it over to the opposite side. Then,
the other player is expected to return the ball. Repeating this
process allows the players to maintain a rally, an exchange
of the ball between them. During the simulation, players are
supposed to have as long rallies as possible; and this is the
objective of a learning agent.

Fig. 1. The concept drawing showing the main components of the court
used in the simulation environments (universal in all types of simulated
environments).

Fig. 2. A snapshot of the simulation environment with a robot with a low
degree of freedom (SIMPLE).

B. Simulation Landscape

In both types of simulations, a rectangular plane resembles a
badminton court. A white, wall-like object stretches across the
plane to divide it into two sides with equal areas. This object
models a net of a badminton court. A collider is attached to
the net, which means when a ball flies in a trajectory that
penetrates the net, it will be blocked by the net and cannot go
through it. Fig. [I] shows the scale of the court in Unity units.
1 Unity meter corresponds to 1 meter in the real world.

C. Player in 2D Environment

Fig. 2] is a snapshot of the 2D environment, which we call
SIMPLE. Inside the simulation, an arm-shaped robot exists
and is supposed to learn to hit a white ball with its end
effector. The robot only moves in the horizontal direction and
rotates with one axis that is perpendicular to the simulation
plane. With degree 0 being the robot standing straight, it can
rotate from negative 85 degrees to positive 85 degrees. At each
simulation step, the robot moves either forward or backward
to catch up with a coming ball, the white sphere shown in Fig.
and performs a one-way swing by rotating with the axis.

Tables [I] and [[I] show the state space and the action space
of SIMPLE, respectively. The value of each element in a
vector ranges from -1 to 1, which is scaled appropriately when
delivered to the environment simulator as input.



TABLE I
STATE SPACE IN THE SIMPLE

Property Name Vector Size

Robot Position 3
Arm Orientation 4
Ball Position 3
Ball Velocity 3
Target Position 3

—

Total 6

TABLE I
ACTION SPACE OF THE SIMPLE

Property Name Vector Size
Target Orientation 1
Force 1
Value of Movement 1
Total 3

D. Player in 3D Environment

Fig. [3] depicts the 3D simulation, HUMAN-LIKE. The
difference between SIMPLE and HUMAN-LIKE is whether
the ball flies and the robot moves in a 3D space.

The body of a player is derived from Unity’s machine
learning toolkit, ML-Agents [14]. ML-Agents provide differ-
ent kinds of sample environments that are useful when users
try to incorporate RL in their development projects, one of
which is Walker, a task in which a model resembling a human
body learns to walk with its legs (snapshot shown in Fig. ).

We use the human body model used in the ML-Agents
Walker task and adapt it to our customized task environment.
In HUMAN-LIKE, the player’s lower body is detached, so
we are not concerned about training the agent to walk, which
is a difficult problem and not related to the main part of our
research. Table [[T]] lists the joints of the robot with constraints
on the directions they rotate. For each joint, 14 elements are
added to the state space of the environment, as shown in Table
[[V] The whole state space and the action space are shown in
Tables [V] and [VII

E. Behavior of a Ball

As the word already appeared in the former sections, a
“ball” refers to a white spherical object inside the simulation.
This is the object that robots in the simulations try to return for
fulfilling rallies, exchanges of the ball between two players.
We manually programmed the rules of air drag applied to
a shuttlecock so that the trajectory of a ball resembles that
of a shuttlecock in the physical world, where a shuttlecock
hit by a player starts flying at a very high speed but soon
decelerates and reaches the other player with relatively modest
speed. Pseudo-code for dynamic alteration of the ball’s speed
is provided in Algorithm [I] At the beginning of each episode,
the ball is shot toward a player with randomized velocity and
starting position.

F. Task Explanation

To ultimately succeed in the rally task explained in
two different tasks are designed to train agents progressively.

Fig. 3. A snapshot of the simulation environment with a human model
(HUMAN-LIKE).

Fig. 4. The default Walker agent from ML-Agent Toolkit(left), and our player
agent created from the Walker(right).

Algorithm 1 Dynamic alteration of the ball’s speed

INPUT: Initial speed of the ball i OUTPUT: Speed of the
ball at each frame s

Initialize flying duration f,
S 1
for each frame do
f < f + SECONDS-PER-FRAME
if f < 0.6 then
s+ —f+i
end if
Return s
end for

We call the tasks the Low-, a High-level tasks, respectively.
An agent is first trained for the Low-level task. The purpose
of the agent in the Low-level task is to be able to return balls
into the opponent’s court in diverse ways. There is only one
player in the task. The player is placed on one side of the
court, and a ball is shot toward the player. The player tries to
return the ball by changing the position to reach it and rotate
its body joints to realize a hitting motion. The reward functions
are different in SIMPLE and HUMAN-LIKE. In SIMPLE, a
target position that indicates where the player aims to return
the ball is sampled at the beginning of each episode. When the
player successfully hits the ball, and it lands on the opponent’s



TABLE III
LIST OF JOINTS WITH CONSTRAINTS

Joint Name X-Axis Y-Axis Z-Axis
Spine Locked Locked | -15 ~ 15
Chest Locked Locked -15 ~ 15
Right Upper Arm | -90 ~ 90 | -75 ~ 75 | -85 ~ 85
Right Lower Arm | 0 ~ 100 Locked Locked
Right Hand 90 ~90 | 25 ~ 25 0
TABLE IV
ELEMENTS ADDED TO THE STATE SPACE PER JOINT IN HUMAN-LIKE
Property Name Vector Size
Velocity 3
Angular Velocity 3
Position 3
Orientation 4
Magnitude of Applied Force 1
Total 14

court, we calculate the episode reward as:
R = Ry + Ryist- (D

Ry takes a value of either O or 1, depending on whether the
player hits the ball. When the ball hit by the player lands on
the opponent’s court, Rg;s; is calculated as:

Rdisl (d) = EXp(—O.5d> (2)

where the argument d is a distance between the target position
and the position where the ball landed.

In HUMAN-LIKE, we use a more explicit target value than
that in SIMPLE. At the beginning of each episode, a target
velocity, which indicates the velocity at which a player is
requested to hit the ball with its end effector, is sampled. The
reward is calculated when the player hits the ball, following
the equation:

R = 0.5(Rnit + Ryelocity)- 3)

Ry is the same term as that in SIMPLE. Ryejocity i
computed following the formula:

Rvelocily (d) = Exp(—15d) @

where d is the L2 distance between the target velocity and
the actual velocity when the racket collides with the ball,
respectively.

In tasks in both simulations, the ball is fed from a random-
ized position and with a varied velocity at the beginning of
each episode. An episode is terminated when the ball lands
on a court surface, regardless of whether the player hits it.

Another task is the High-level task, which is implemented
only in SIMPLE. In this task, two players are supposed to have
rallies. Each of them is placed on either side of the court facing
one another. Once the ball is fed to either of them when an
episode starts, they return the ball to their opponent’s court in
turns. We note that since the player needs to consider where
their opponent is when deciding where to hit the ball, the
position of the opponent is incorporated into the action space
of the task environment in addition to the properties described
in Table. [

TABLE V
STATE SPACE OF HUMAN-LIKE

Property Name Vector Size

Spine 14
Chest 14
Right Upper Arm 14
Right Lower Arm 14
Right Hand 14
Position of the Ball 3
Velocity of the Ball 3
Position of the Player 3
Position of the Racket Head 3
Target Velocity 3
Total 85
TABLE VI
ACTION SPACE OF HUMAN-LIKE
Property Name Vector Size
Value of Movement 2
Target Rotation of “Spine” 1
Target Rotation of “Chest” 1
Target Rotation of “Right Upper Arm” 3
Target Rotation of “Right Lower Arm” 1
Target Rotation of “Right Hand” 2
Force Applied to Each Joint 5
Total 15

We set the task to a cooperative setting in this research. An
episode reward gets a positive value of 0.2 each time one of
the players hits the ball.

IV. TRAINING PROCEDURE

To train a model that can play a rally, we divide the training
process into two parts, low-level and high-level training. Each
of them is executed in the Low-level and High-level task in
the simulation, respectively.

In this research, we use goal-conditioned HRL. In HRL
architecture, there are two different policies instead of only
one, as in most of the other RL algorithms. We call the first
policy a low-level policy formulated as m\°*(als,g) where
a and s indicate action and observation of the task, and g
represents the goal value explained in the earlier section. In
the Low-level task in SIMPLE, a trained low-level policy is
supposed to output proper arm movement to return a ball to
the position described by the value of g.

The other policy is called a high-level policy defined as
wé”g "(g|s). The high-level policy is responsible for determin-
ing the target value g based on the given input observation
s, which means to decide where in the opponent’s court the
player returns the shuttle.

The two policies introduced above function as one inference
model to output the ultimate movement of the player. When
any state is given, the high-level policy takes it as input to
return a goal, which is given to the low-level policy with the
input state to output its action.

As shown in Figure[5] we start by training a low-level policy
7% (als, g) in the low-level task described in Chapter 4. Once
we have the trained 70 (als, g), we load it into the high-level
task. This way, players in the environment can return balls
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Fig. 5. The Training Pipeline.

from the beginning of the high-level training, so we only focus
on updating the high-level policy. We only train one policy at
a time, so when one of the policies is modified, the other is
frozen throughout the training phase.

We aim to employ the HRL approach because we theorize
that its two-stage inference flow mirrors human decision-
making in sports. Human players first decide on their ob-
jective during games, and think about how to execute it by
moving their bodies accordingly. By modeling this cogni-
tive process with an HRL framework, we can imbue the
agent with an inductive bias, potentially enhancing sample
efficiency of the training. The training code is provided in
https://github.com/shuny42657/RallySim

V. RESULTS

We conduct some experiments to validate the efficacy of
HRL for the rally task. The results are discussed in this chapter.

We compare the quantitative results of the model trained by
our suggested method with the one trained through a single-
policy approach. We also spectate the rendered results of the
models performing each task. From the obtained results we
conclude that our hierarchical approach significantly improves
the overall performance of a player in the badminton tasks and
the learning efficiency.

A. Training Results of SIMPLE

We first evaluate the quantitative and qualitative results in
Low-level and High-level tasks. We use the PPO algorithm
throughout the training [18]], [19].

Fig. [0] illustrates the reward in the low-level task conducted
in SIMPLE with 2,000,000 training steps. Values are plotted
at the evaluation phase that comes every 5000 training steps
during the training.

The reward value reached around 1.8. We also rendered the
trained model to evaluate its performance quantitatively. Fig. [7]
shows snapshots of an episode where the robot aims to return
the ball to the place shown with the red sphere. The robot

Low-level Task Result in SIMPLE

Reward
-
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Fig. 6. Reward in the low-level task in SIMPLE, with 2.0 being the maximum
reward.

Fig. 7. Rendered results of a trained agent successfully returning the ball to
the target positions.

successfully moved to a good position for it to hit the ball,
able to return it to the place close enough to the target position.

For the High-level task, we prepared two methods to com-
pare with our proposed methods(Ours). We call them “Random
High-level” and “Monolithic,” respectively. Random High-
level only trains the low-level agent and uses random high-
level action(goals) when playing rally in the high-level task.
Monolithic is named after its architecture, which only has a
single-policy network, as most other RL algorithms. It skips
the training of the low-level task and directly trains a model
with the PPO algorithm in the high-level task. Table [VII] shows
the evaluation results of each method with how many times
players trained by each method could exchange the ball (rally
length). We compared both the average rally length and the
number of times a rally reached the maximum rally length of
50. Ours surpasses the other two methods in both categories.
The fact that players trained by Ours play longer rallies than
Monolithic validates our hypothesis that the rally problem is a
complicated task that cannot be solved well by using a single-
model policy, but HRL can effectively tackle it. Ours also
outperformed Random High-level. Supported by this fact, we
also argue that only having a trained low-level policy is not
enough to solve the rally task, but learning a strategic factor
of the task in a high-level training phase plays an important
role in displaying a desirable performance in it.

We observed the rendered results of the high-level tasks as
we did so in the low-level task. Players trained by Ours tend
to maintain a stable rally by choosing to return the ball to
the middle of the opponent’s court, which is thought to be an


https://github.com/shuny42657/RallySim

TABLE VII
EVALUATION RESULTS OF EACH METHOD IN THE HIGH-LEVEL TASK

Method Average Rally Length ~ Number of Rallies with Length of 50
Ours 20.25 13
Random High-level 12.90 3
Monolithic 1.32 0

Result of the Low-level Task in HUMAN-LIKE
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Fig. 8. The training result of the Low-level task in Human-Like

easy kind of shot to return since the opponent does not need
to move a lot to reach the ball compared to the situation in
which it falls onto the front side of the court, or it flies to the
rear side. This basic principle in the players’ choice of shots
makes the rally stable unless one of them sometimes misses or
fails to return the ball to the target position set in the middle
of the opponent’s court.

Players trained by Random High-level can return shuttles to
their opponent’s court, but since cannot choose a target place,
the ball often flies to spots where it is hard for their opponent
to return it successfully. The rally is more likely to get unstable
than that played by players trained by ours, making the average
rally length shorter. Monolithic models can maintain the rally
for few times, but the players cannot to cope with all the
shots that land in different places on the court. Nor can they
return the ball in the way their opponent can easily hit it.
The evaluation code for SIMPLE environment is provided in
https://github.com/shuny42657/RallySimEvaluation

B. Training Results of HUMAN-LIKE

In this research, we only conducted the low-level task in
HUMAN-LIKE. The reason why we did not test our low-level
model trained in HUMAN-LIKE in the high-level task is that
the trained model did not display the required performance
needed for it to be used in the high-level task. Since HUMAN-
LIKE has 3 dimensions the trajectories of the ball that a
player needs to hit get drastically diverse compared to those
in SIMPLE; it was hard for the model to learn to cope with
all the situations. The model we currently have after training
can return the ball that follows limited kinds of trajectories.

Figure 8] shows the result of the low-level training of our
proposed method(Ours) in HUMAN-LIKE.

Although the learning curve did grow to an extent, when
we rendered the simulation of the Low-level task in HUMAN-

LIKE the result did not exhibit satisfactory outputs. Although
the player diversifies the ball’s behavior to some extent,
comparing the velocity of the racket when it collides with
the ball with the target velocity, they are different at least by
approximately 10 degrees in Euler angles. It is, therefore, not
capable of returning the ball to the extent we intuitively feel
that its control is accurate enough.

The player in HUMAN-LIKE is designed to be able to
perform movements that resemble that of humans. Further
research is expected to create a method that can make the
player act in a more sophisticated way.

VI. CONCLUSION

We proposed RallySim as a novel cooperative multi-agent
problem that involves both motor control and acquisition of
strategy. HRL displays prominence in training an agent that
can successfully perform a long rally in the task. Training in
the 3D environment leaves room for further exploration.
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